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In this article, the beginnings of glutamate pharmacology are traced from the early doubts about
‘non-specific’ excitatory effects, through glutamate- and aspartate-preferring receptors, to NMDA,
quisqualate/AMPA and kainate subtypes, and finally to the cloning of genes for these receptor subunits.
The development of selective antagonists, crucial to the subtype classification, allowed the fundamental
importance of glutamate receptors to synaptic activity throughout the CNS to be realised. The ability to
be able to express and manipulate cloned receptor subunits is leading to huge advances in our under-
standing of these receptors. Similarly the tortuous path of the nomenclature is followed from naming
with reference to exogenous agonists, through abortive early attempts at generic schemes, and back to
the NC-IUPHAR system based on the natural agonist, the defining exogenous agonist and the gene
names.

� 2008 Elsevier Ltd. All rights reserved.
1. The first inklings

The realisation in 1930s–1950s that central synaptic trans-
mission was likely to be chemical rather than electrical evoked
questions as to the nature of the chemicals involved (Dale, 1952;
McLennan, 1963; Eccles, 1964). Acetylcholine and monoamines
were accepted as transmitter substances at peripheral synapses and
in some non-mammalian preparations. With a few notable excep-
tions, however, these substances failed to mimic the rapid synaptic
excitation of central neurones when administered microelectro-
phoretically via multibarrelled microelectrodes directly into the
extracellular environment of single neurones in the mammalian
central nervous system (McLennan, 1963; Eccles, 1964; Curtis,
1963). This powerful technique (Curtis and Eccles, 1958) had been
valuable in confirming the cholinergic nature of transmission at the
neuromuscular junction (Nastuk, 1953; Del Castillo and Katz, 1955)
and helping establish the role of acetylcholine at the motor axon
collateral synapse onto Renshaw cells in the spinal cord (Curtis and
Eccles, 1958). The slow onset of and recovery from the changes in
excitability induced by acetylcholine and monoamines on most
central neurones ruled them out as the transmitters of the fast
excitation seen following afferent stimulation.

Several diverse pieces of evidence brought an interest in acidic
amino acids as excitants in the mammalian CNS. Firstly, L-glutamate
and L-aspartate were found in high concentrations throughout the
All rights reserved.
brain (Berl and Waelsch, 1958). Secondly they induced convulsions
(Hayashi, 1952, 1954) and spreading depression (van Harreveld,
1959; Purpura et al., 1959) when applied to the cerebro-cortical
surface. Thirdly, they elicited depolarisation of the crayfish muscle
(van Harreveld, 1959). Quite independently of these findings,
however, Curtis, Phillis and Watkins, working in Eccles group in
Canberra, investigated the role of these acidic amino acids, using
the technique of microelectrophoresis on the excitability of spinal
neurones (Curtis et al., 1959, 1960). The results were outstanding,
i.e. fast excitation following extra-, but not intra-, cellular admin-
istration. Both depolarisation and an increase in action potential
firing were elicited that ostensibly mimicked the action of synaptic
events (Fig. 1A and B). However, the authors were not convinced
that they had identified the fast excitatory transmitter of the
mammalian CNS.
2. Early doubts

Their concerns arose when the detail was examined with respect
to the criteria required to establish substances as neurotransmitters
(e.g. McLennan, 1963): (i) all neurones were excited in a non-
specific manner, even the cholinoceptive Renshaw cells, (ii) there
was no apparent enzymatic breakdown to terminate transmitter
action, (iii) there was little evidence for the release from nerve
terminals of these acidic amino acids, and (iv) the reversal potential
for the exogenous amino acids was more hyperpolarised than that
for synaptic potential. Additionally, the unnatural D-isomers were as
potent as the L-isomers, and glutamic, aspartic and cysteic acids all
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Fig. 1. Aspartate and glutamate excite central neurones. A. Intracellular record (a)
showing the action of L-aspartate on the membrane potential of a gastrocnemius spinal
motoneurone in vivo. L-aspartate (520 nA) was ejected from an outer barrel of the
multibarrel electrode illustrated in the inset; the electrophoretic current (b) is
switched and reversed to demonstrate the coupling artefacts (see dashed line on the
intracellular record) and the clear depolarising effect of L-aspartate. The lower records
show excitatory (c,e,g) and inhibitory (d,f,h) synaptic potentials from the same neu-
rone before (c,d), during (e,f) and after (g,h) ejection of L-aspartate. The reduced epsp
and increased epsp were thought to be a result of the change in driving force as a result
of the aspartate-induced depolarisation (modified from Curtis et al., 1960). B. Extra-
cellular record of a spinal motoneurone in vivo showing (a) a synaptic response with
action potential discharges coincident with the field potential, (b,c) the firing of this
neurone in response to the electrophoretic ejection of L-glutamate (20 and 120 nA
respectively) (modified from Curtis et al., 1960). Note these are some of the earliest
records showing effects of acidic amino acids on single neurones.
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had similar potencies as excitants. In addition, their equivalent
neutral amino acids, g-aminobutyric, b-alanine and taurine, were
equally active as depressants (Curtis and Watkins, 1960). It was
therefore assumed that these naturally occurring amino acids
controlled the background excitability in a humoral manner via
non-specific receptors on the neuronal membrane. Hence their
candidature as transmitters was de-emphasised. Nevertheless over
the next few years by investigating these concerns, these authors
and their co-workers were at the forefront of re-establishing
a transmitter role for L-glutamate.

Briefly some of the early key evidence that answered the first
four concerns can be listed:

(i) In addition to the cholinergic excitation of Renshaw cells from
recurrent motor axon collaterals, non-cholinergic synaptic
excitation of these cells was also demonstrated (Curtis et al.,
1961). The discovery that the hotspots for glutamate excitation
on crustacean muscle corresponded to sites of synaptic
innervation (Takeuchi and Takeuchi, 1963) was also a strong
argument against the ‘non-specific’ claim. Later differential
sensitivity of groups of neurones to glutamate ligands also
pointed to a more specific type of action (see below).

(ii) Eccles and Jaeger (1957) had earlier considered that diffusion
alone could account for removal of transmitter and later Eccles
(1964) argued that reversal of the membrane potential during
the synaptic event would drive an anionic transmitter, e.g.
glutamate, from its receptors. The discovery that active
transport processes for acidic amino acids limited the action of
extracellular glutamate (Balcar and Johnston, 1972; Lodge
et al., 1979; Johnston, 1976) also reduced this concern.

(iii) Similarly evidence for the machinery for glutamate synthesis
from glutamine (e.g. Bradford and Ward, 1976; Hamberger
et al., 1978; Ward and Bradford, 1979), for uptake (e.g. Logan
and Snyder, 1971; Balcar and Johnston, 1972; see Johnston,
1976) and for calcium-dependence of synaptic release (e.g.
Roberts, 1974; Davies and Johnston, 1976) followed later.

(iv) By today’s standards, the methodology for measuring the
reversal potential was relatively crude. Differences in location
on neuronal membranes of synaptic events versus exogenous
glutamate, the rectification properties of various glutamate
receptor-channel complexes and the differential contributions
of receptor subtypes to synaptically released and to exoge-
nously administered transmitter could all be contributory to
the small reversal potential discrepancy (see e.g. Crunelli et al.,
1984). Hence this concern has been dismissed.
3. Hints of diversity

Following on from their initial studies, Watkins synthesised and
Curtis and Watkins (1963) tested a large series of acidic amino
acids. Among these earliest compounds was N-methyl-aspartate,
the D-isomer (NMDA) of which has played such a prominent role in
defining receptor nomenclature. NMDA proved to be greater than
10 times more potent than L-glutamate itself whereas the L-isomer
was similar in potency to L- and D-glutamate. Similarly D-homo-
cysteate was several times more potent than L-homocysteate and
glutamate. Such data suggested that there were preferred confor-
mations for activity of these acidic amino acids. This supports the
case for specific receptors but the D-isomer pre-eminence seemed
at odds with the known stereochemistry of natural compounds. It
was not until the stereoselectivity of the transport systems for
a number of these amino acids had been considered in relationship
to their excitatory properties that this concern began to be under-
stood. Thus in general, the D-isomers were removed from the
extracellular environment less avidly and hence their apparent
potency in intact preparations was increased (Balcar and Johnston,
1972; Curtis and Johnston, 1974).

Two key pieces of research were important in developing the
idea of subtypes of glutamate receptors. Firstly the discovery of
antagonists that (i) were selective between the inhibitory amino
acids, glycine and GABA, namely strychnine and bicuculline
respectively, and (ii) differentiated between synaptic inhibitions
convinced researchers of the potential for equivalent acidic amino
acid excitatory synapses (see e.g. Curtis and Johnston, 1974).
Secondly, the differential distribution of L-glutamate and L-
aspartate in the CNS suggested separate roles for these two putative
transmitters (Graham et al., 1967; Johnston, 1968; Duggan and
Johnston, 1970; see Curtis and Johnston, 1974).

4. Aspartate- and glutamate-preferring receptors

Until the end of 1960s, the relative potencies of glutamate,
aspartate and related compounds were thought to be similar
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throughout the CNS but indications that this was not true came
from early studies of McLennan et al. (1968) on thalamic neurones
and Duggan (1974) who showed differential sensitivity to aspartate
and glutamate respectively of spinal neurones activated poly-
synaptically or monosynaptically. Such differences were accentu-
ated when the structurally restrained compounds were tested
(McCulloch et al., 1974). These latter authors used NMDA and kai-
nate, a highly potent compound first described by Shinozaki and
Konishi (1970), which was to play an important role in nomencla-
ture. By the early 1970s, excitatory amino acids were tentatively
divided into ‘glutamate-preferring’ and ‘aspartate-preferring’
categories, with kainate and NMDA being regarded as the key
exogenous ligands. Another potent excitant due to play a similar
nomenclature role, quisqualate, was discovered by Shinozaki and
Shibuya (1974) and rapidly assessed on mammalian neurones
(Biscoe et al., 1975, 1976).

Early attempts at studying the binding of glutamate and aspar-
tate did not help to reveal clearly different transmitter binding sites,
although the sodium-independent and -dependent sites were
indicative of transmitter receptors and transporters respectively
(see Roberts, 1981); the 14C-glutamate, in use at that time, had too
low a specific activity to be very useful in binding studies. The
discovery and characterisation of NMDA-insensitive 3H-kainate
binding, however, supported conclusions of selectivity from the
earlier electrophysiology (Simon et al., 1976; London and Coyle,
1979).

5. NMDA and non-NMDA receptors

The next major breakthrough in characterising excitatory amino
acid receptors was the discovery of antagonists related to gluta-
mate, which were weakly selective. These included glutamic acid
diethyl ester (GDEE), D-a-aminoadipate (DaAA) and 1-hydroxy-3-
aminopyrrolidone-2 (HA-966). In the early studies, GDEE
(Haldeman and McLennan, 1972) and DaAA/HA-966 (e.g. Biscoe
et al., 1977) showed some selectivity between glutamate and
aspartate respectively but greater selectivity between their struc-
tural analogues. At this time, the nomenclature was changing from
‘aspartate-preferring’ receptors to ‘NMDA’ or ‘NMA’ receptors and
‘glutamate-preferring’ receptors were becoming ‘non-NMDA’
receptors. For example, Davies and Watkins (1979), comparing
DaAA and GDEE and some other antagonists on agonist excitation
in the cat spinal cord, divided them pharmacologically such that
NMDA and L-homocysteate were in a DaAA-sensitive group, L-
glutamate, kainate and quisqualate were in a DaAA-resistant group
and L-aspartate was intermediate (Fig. 2A and C). Similar observa-
tions had been made earlier using HA-966 (Curtis et al., 1973;
Davies and Watkins, 1973).

In parallel with these organic antagonists, Evans made the novel
and striking observation that the divalent cation, magnesium, also
selectively reduced responses to NMDA (Fig. 3A; Evans et al., 1977;
Ault et al., 1980). This was later shown to be due to magnesium and
other divalent cations limiting channel conductance in a voltage-
dependent manner (Nowak et al., 1984; Mayer et al., 1984). All these
studies strongly supported the idea of NMDA and non-NMDA
receptors for the presumed transmitters, L-aspartate and
L-glutamate.

6. NMDA, quisqualate and kainate receptors

In a subsequent blinded experiment comparing the two antag-
onists, McLennan and Lodge (1979) had a similar result with DaAA
but found that, of the above agonists, GDEE selectively reduced
responses to L-glutamate, L-cysteate and quisqualate. Excitations
induced by kainate, however, remained resistant to both DaAA and
GDEE, a result similar to that observed by Hicks et al. (1978). This
evidence for three receptor subtypes, namely NMDA, quisqualate
and kainate, was confirmed in independent studies by Davies and
Watkins (1981) using g-D-glutamylglycine (DGG) and by Davies and
Watkins (1985) using g-D-glutamylaminomethyl sulfonate (GAMS),
both of which reduced kainate more than quisqualate responses. A
distinct presynaptic role for kainate receptors had been demon-
strated by Biziere and Coyle (1979) and by Köhler et al. (1979) who
showed that de-afferentation reduced the neurotoxicity of kainate.
Further strong evidence for a separate kainate subtype was
provided by Evans who demonstrated the selective depolarising
effect of kainate (and glutamate) on dorsal root C fibres (Fig. 8A;
Agrawal and Evans, 1986). Because quisqualate, AMPA (see below)
and NMDA were essentially inactive on this preparation (Fig. 8A),
this receptor on nociceptive afferents was uniquely sensitive to
kainate. These observations were subsequently confirmed with
more sophisticated technology on dorsal root ganglion neurones
(Huettner, 1990; Wong and Mayer, 1993).

This 30-year-old 3-subtype classification, namely NMDA, AMPA
and kainate receptors, with all its limitations, has stood the test of
time and underpins the modern nomenclature (see below).

7. AMPA not quisqualate

Only the name of the ‘quisqualate’ receptor has been changed.
Povl Krogsgaard-Larsen, a chemist from Denmark, synthesised
a series of isoxazoles to be tested in Curtis’s group just as the
McLennan and Lodge (1979) work was being completed there.
Tested under the same conditions, the potent excitatory action of a-
amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) was
antagonised by GDEE and not by DaAA (Fig. 4A; Krogsgaard-Larsen
et al., 1980). Therefore, when later quisqualate was found to act at
metabotropic glutamate receptors (Sladeczek et al., 1985; Nicoletti
et al., 1986), it was sensible to change the ‘quisqualate’ nomencla-
ture to ‘AMPA’. Like all changes in nomenclature, however, it took
some time for this change to be universally employed. Interestingly,
although more potent agonists have been found for NMDA recep-
tors (e.g. tetrazol-5-yl-glycine; Schoepp et al., 1991) and for kainate
receptors (e.g. domoic acid; Biscoe et al., 1975, 1976), the original
names have been retained. During 1980s, the concept of the NMDA,
AMPA and kainate subclasses of glutamate receptor became well
entrenched (Watkins and Evans, 1981; McLennan, 1983; Colling-
ridge and Lester, 1989).

8. NMDA receptors and synaptic events

In parallel with their value in elucidating the receptor phar-
macology, these antagonists, including magnesium, facilitated the
answer to the fundamental query as to the role of these newly
demonstrated receptors in synaptic events in the CNS. Although the
earliest experiments were not necessarily convincing, the steadily
accumulating data showing reduction of synaptic excitations with
DaAA strengthened the case (e.g. Haldeman and McLennan, 1972;
Biscoe et al., 1977; Lodge et al., 1978; Davies and Watkins, 1979) for
NMDA receptors mediating ‘polysynaptic’ excitations (Fig. 2B and
C). Subsequently, the development of highly selective NMDA
antagonists, such as the very important D-2-amino-5-phosphono-
pentanoate (D-AP5; e.g. Davies and Watkins, 1982; Collingridge
et al., 1983; Evans et al., 1982), added considerable confidence to
some of the earlier conclusions about receptors subtypes and led to
numerous investigations confirming the synaptic role of NMDA
receptors throughout the CNS.

During most of the above studies, it was generally considered
that L-aspartate was the likely transmitter at NMDA receptors,
largely because of its greater sensitivity to NMDA antagonists than
L-glutamate. Other compounds considered as potential trans-
mitters at that time included L-homocysteate (see e.g. Do et al.,



Fig. 2. D-a-aminoadipate selectively reduces responses of Renshaw cells to aspartate, NMDA and synaptic excitation from afferent nerves. A. Ratemeter record showing selective and
reversible antagonism of aspartate during ejection of 20 nA DaAA. B. Synaptic responses of the same cell following dorsal (DR) and ventral (VR) root stimulation before (a), during
(b) and after (c) ejection of 40 nA DaAA. (A and B modified from Davies and Watkins, 1979). C. Ratemeter records showing selective and reversible antagonism of aspartate and
NMDA before (a), during (b) and after (c) ejection of 25 nA DaAA, and histograms of the synaptic responses to dorsal and ventral root stimulation before (b,c), during (e,f) and after
(h,i) ejection of 25 nA DaAA (modified from Lodge et al., 1978). Note that these are some of the first published records convincingly showing selective excitatory amino acid
antagonism and selective reduction of the afferent synaptic responses. The responses to acetylcholine and to recurrent ventral root stimulation are unaffected.
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1986) and quinolinate (Stone and Perkins, 1981). However, the
observation that L-glutamate displaced D-AP5 binding 10�, 4� and
100� more potently than L-aspartate, L-homocysteate and quino-
linate (Olverman et al., 1984) negated the former argument.
Therefore, L-glutamate assumed the status of the neurotransmitter
at NMDA receptors in the brain.

D-AP5 also opened the way for new concepts to be discovered.
Thus, for example, Collingridge et al. (1983) first identified the role
of this receptor in synaptic plasticity within the hippocampus,
which was subsequently related to deficits in spatial learning in the
water maze tests (Morris, 1989). Now this receptor is established as
a major player in many forms of Long Term Potentiation and Long
Term Depression throughout the CNS (see Bliss and Collingridge,
1993). Experiments with D-AP5, and its heptanoate homologue, D-
AP7, were also crucial to understanding the central role of NMDA
receptors in epilepsy (Croucher et al., 1982), ischaemic neuro-
degeneration (Simon et al., 1984) and pain (see Dickenson, 1990).
Such insights into the potential therapeutic role of NMDA antago-
nists led to huge synthetic activity in both the pharmaceutical
industry and academia. By the mid-1990s, a handful of such
compounds had been tested in man (see Herrling, 1997).

9. The glycine site of NMDA receptors

NMDA receptor pharmacology took on new and interesting
aspects during 1980s. In Ascher’s lab, the requirement for glycine
(or related amino acid) as a co-agonist with L-glutamate (Johnson
and Ascher, 1987). The nanomolar affinity of this strychnine-
insensitive glycine binding site together with the micromolar
glycine concentration in CSF (Curtis and Johnston, 1974; Kleckner
and Dingledine, 1988) suggested that, unless the receptors were
protected by a very high affinity transport process, the glycine site
would be fully occupied in physiological conditions. This, however,
remains a topic of debate even today. Shortly afterwards,
pharmacological studies demonstrated this to be the site of action
of HA-966 (see above) as an NMDA antagonist (Fletcher and Lodge,
1988; Foster and Kemp, 1989; Drejer et al., 1989; Lodge and Jones,
1990) (see Fig. 6). The NMDA blocking action of kynurenic acid and
in particular 7-chlorokynurenate was also shown to be via this
glycine site (Kemp et al., 1988; Mayer et al., 1988; Birch et al., 1988;
Kessler et al., 1989). This glycine receptor became the target of
considerable pharmacological activity (Kemp and Leeson, 1993).

10. Ketamine and phencyclidine

Also in the early 1980s, while studying the central effects of
various general anaesthetics, Lodge’s group noted that unlike
barbiturates and steroid anaesthetics which potentiated GABA
mediated inhibitions, the dissociative anaesthetic, ketamine,
selectively reduced polysynaptic spinal reflexes (Lodge and Anis,
1984). The mechanism of action of ketamine was shown to be
postsynaptic antagonism at the NMDA receptor (Fig. 5A; Anis et al.,
1983). This effect was non-competitive in nature (Lodge and
Johnston, 1985; Martin and Lodge, 1985) occurring in a use- and
voltage-dependent manner indicative of channel blockade (Honey
et al., 1985). The related drug, phencyclidine (PCP) was approxi-
mately 10� more potent than ketamine as an NMDA antagonist
(Fig. 5B; Anis et al., 1983), a finding which paralleled behavioural
studies and PCP binding studies. Several pharmaceutical compa-
nies, that were searching for ‘PCP antagonists’ as potential anti-
psychotics, made their compounds available. As a result, about 20
compounds, arycyclohexylamines, dioxalanes, benz(f)isoquino-
lines, benzomorphans, etc., including stereoisomeric pairs, were
examined between 1982 and 1986 (see Lodge and Berry, 1984;
Lodge et al., 1988). Their relative NMDA antagonist potencies were
found to closely correlate with their relative potencies in PCP
binding studies and in behavioural studies of the discriminative
cues of these psychotomimetic agents (see Lodge and Berry, 1984;



Fig. 3. Magnesium reduces NMDA responses. A. Dose–response curves from an iso-
lated hemisected spinal cord showing the effects of magnesium on depolarising
responses of frog ventral roots to the following amino acids from the top downwards:
quisqualate, kainate, L-glutamate, L-aspartate, L-homocysteate and NMDA (modified
from Ault et al., 1980). B. Current–voltage curve from a cortical neurone in culture
showing the non-linearity (negative slope conductance) of the curve introduced by the
presence of magnesium (dashed line) compared with that in magnesium-free medium
(solid line). Inset shows single channel openings in responses to NMDA in the
magnesium-free medium (left hand records) and after addition of magnesium to the
medium (right hand records). The flickering nature of the channel current in
magnesium is thought to represent the slow movement of magnesium ions through
the channel. Note that establishment of this block by normal extracellular levels of
magnesium was very central to understanding the mode of action of NMDA receptor
channels (modified from Johnson and Ascher, 1988).

Fig. 4. Non-NMDA receptor pharmacology. A. DLaAA reduces responses to NMDA but
not to AMPA whereas GDEE reduces responses to AMPA and not those to NMDA. This
degree of selectivity with GDEE was fairly typical, it being unusual to see full block
without some reduction of the response to NMDA. Note this is the first published
record showing the effects of AMPA on central neurones (modified from Krogsgaard-
Larsen et al., 1980). B. CNQX reduces responses to quisqualate and kainate of spinal
neurones to much the same extent but with no effect on the responses to NMDA
(modified from Honore et al., 1988). Note AMPA became the agonist of choice for
receptors of the same name and CNQX and later NBQX became very useful agents for
determining synaptic responses mediated by non-NMDA receptors.
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Lodge et al., 1988). Because ketamine and PCP induce schizo-
phrenia-like symptoms in man (Domino et al., 1965; see Domino
and Luby, 1981), it was suggested that modulating glutamate
function might ameliorate psychotic symptoms (see Lodge and
Berry, 1984; Lodge et al., 1988), a strategy subsequently followed by
many pharmaceutical companies. This discovery underpins the
glutamate hypothesis of schizophrenia (Carlsson et al., 2001).

One of the most potent and selective of these use-dependent
and voltage-dependent channel blockers is MK-801 (Wong et al.,
1986) which has proved a valuable tool for studying NMDA receptor
function (Wong and Kemp, 1991). Indeed its various putative
therapeutic goals spurred the search for other NMDA antagonists.
Although several of these have been progressed towards the clinic,
the potential side-effect problems, particularly of a psychoactive
nature, have prevented their development. One of these, aptiganel,
was tested in a stroke trial (see Herrling, 1997) but failed efficacy
measures probably due to dose constraints and poor trial design.
Ketamine is still widely used and has strong advocates as an
analgesic/anaesthetic agent (see Sinner and Graf, 2008; Campbell-
Fleming and Williams, 2008). Beside ketamine, however, the only
therapeutically successful NMDA antagonist developed to date is
memantine which is also a low affinity, use- and voltage-dependent
analogue (Parsons et al., 1999, 2007; Rogawski and Wenk, 2003).
Excitingly, new data are emerging that a single treatment with
ketamine produces a long lasting anti-depressant effect in treat-
ment-resistant patients (Berman et al., 2000; Zarate et al., 2006).

These compounds, unlike the polar competitive antagonists,
have rapid access to the CNS following systemic administration
(Fig. 5) and, in the case of ketamine, a short duration of action. This
makes them ideal for studying the role of NMDA receptors in
physiological and behavioural experiments. Thus, ketamine was



Fig. 5. Ketamine and phencyclidine as NMDA antagonists. A. Ketamine (10 mg/kg i.v.)
selectively blocks polysynaptic responses of a spinal neurone with little effect on the
earlier monosynaptic response following stimulation of high threshold afferents in the
sural nerve. Concomitantly the responses to electrophoretic NMDA are abolished
whereas responses to quisqualate are unaffected. Partial recovery is seen over the next
90 min (modified from Lodge et al., 1983). B. Phencyclidine (0.4 mg/kg i.v.) almost
blocks responses to NMDA whereas responses to quisqualate and kainate are not
reduced. The recovery from phencyclidine usually required more than 1 h of stable
recording. Note these are some of the first records showing NMDA antagonism by
these dissociative anaesthetics.

Fig. 6. Glycine as a co-agonist for NMDA receptor activation. A. Whole cell currents
from a patch clamp recording from a neurone in culture, showing minimal current
induced by NMDA or glycine alone, but a robust response when applied together.
Precautions had been taken to minimise glycine content of the perfusing medium.
Note this requirement for two agonists was a unique and exciting finding (modified
from Johnson and Ascher, 1988). B. NMDA antagonism by HA-966 is reversed by co-
administration of glycine. Glycine did not reverse the NMDA antagonism induced by D-
AP5 or by ketamine. Note HA-966 was amongst the first selective NMDA antagonists to
be discovered (see text) but its structure was atypical of the other competitive
antagonists such as DaAA known at the time. Hence it was some 20 years before its
mode of action was understood (modified from Fletcher and Lodge, 1988).
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used to demonstrate the role of NMDA receptors in spinal cord
‘wind-up’, a short term potentiation of nociceptive responses often
linked to sensitisation in pain pathways (Davies and Lodge, 1987).

Finally, the schizophrenomimetic properties of ketamine and
PCP predicted that other NMDA antagonists would have similar
behavioural properties. Although this hasn’t been tested to the full,
two competitive antagonists, D-CPPene and CGS197555 showed
psychogenic effects in man (Herrling, 1997).
11. Blind alleys

Despite this clear pharmacological separation of the three
receptor subtypes, there have been suggestions that the different
receptors could operate the same channel.

Eric Barnard’s group extracted separate quisqualate and kainate
binding proteins from Xenopus brain which could be recombined to
produce a unitary receptor for these two agonists (Henley et al.,
1989). Later they also found that an NMDA receptor could associate
with non-NMDA receptors so that the different ligands could
operate the same complex (Henley et al., 1992) and that such
complexes occur in Xenopus brain (Soloviev et al., 1998). Such
a unitary receptor appears unique to Xenopus and has not appeared
from cloning endeavours in mammals.
A similar conclusion was made from analyses of sub-
conductance states of single channel openings in cultured
mammalian neurones. Thus it was suggested that, although kainate
and quisqualate preferentially activated lower conductance states
and NMDA higher conductance states, transitions between the
states indicated a common channel for the different receptor
subtypes in hippocampal neurones (Jahr and Stevens, 1987) and
possibly in cerebellar Purkinje cells (Cull-Candy and Usowicz,
1987). This idea appeared at odds with the observations of the
selectivity of the channel blocking NMDA antagonists, such as
ketamine, PCP and MK-801 and was quickly dropped.
12. Binding studies

Binding studies in 1980s also made major contributions to our
understanding of the receptor subtypes (Foster and Fagg, 1984;
Honore and Drejer, 1988; Watkins and Olverman, 1988; Monaghan
and Cotman, 1982; Monaghan et al., 1989; Young and Fagg, 1990).
High specific activity 3H-glutamate also proved an invaluable tool
for describing the localisation of receptors. Thus, using selective
ligands to displace glutamate binding and the technique of auto-
radiography, Monaghan and Cotman (1982) and Monaghan et al.
(1984) showed the differential distribution of the three ionotropic
receptor types. Ann Young’s group demonstrated the identical
localisation of the PCP, NMDA and strychnine-insensitive glycine
binding sites in hippocampal and cortical regions of the rat brain
(Maragos et al., 1991; McDonald et al., 1990). Similarly, the 3H-
glutamate bound to two sites on postsynaptic densities displaced
by quisqualate and NMDA respectively, confirming the pharma-
cology of synaptic excitation as described above (Fagg and Matus,
1984). With the development of 3H-labelled AMPA and kainate
radioligands, support for separate receptors of the same name was
forthcoming. Thus, for example, the effect of inorganic ions and of
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glutamate receptor ligands on the binding of AMPA and kainate
were quite different (Honore and Drejer, 1988).

13. AMPA and kainate antagonists

As mentioned above, the relatively poor selectivity of such
compounds as GDEE and DGG, limited the investigation of the non-
NMDA receptors’ subtypes. The discovery therefore of the quinox-
alinediones, DNQX and CNQX (Honore et al., 1988; Fletcher et al.,
1988) and later of NBQX (2,3-dihydroxy-6-nitro-7-sulfamyl-
benz(f)quinoxaline; Sheardown et al., 1990) was an important
breakthrough. NBQX had a 30-fold greater affinity for AMPA
binding than for kainate binding and, unlike CNQX and DNQX, was
essentially free of activity at the glycine site of the NMDA receptor.
On cortical wedges, the selectivity of NBQX was reflected with
approximate pA2 values versus AMPA, kainate and NMDA of 7.1, 5.6
and <4, respectively (Lodge et al., 1991). It was, however, only
weakly selective between AMPA and kainate excitations on spinal
neurones in vivo (Lodge and Jones, 1990). This reflects both the
non-specificity of NBQX and to a greater extent that of kainate,
which induces depolarisation via both AMPA and kainate receptors,
as suggested from binding studies (e.g. Honore and Drejer, 1988).

In 1989, a 2,3-benzodiazepine, GYKI52466, was reported to block
monosynaptic reflexes but not via a GABA potentiating mechanism
(Tarnawa et al., 1989). When tested directly on central neurones,
GYKI52466 and structural analogues, preferentially reduced
responses to AMPA in a non-competitive manner (Ouardouz and
Durand,1991; Lodge et al.,1992,1996; Donevan and Rogawski,1993;
Bleakman et al., 1996; Paternain et al., 1995; Wilding and Huettner,
1995) (see Fig. 7A). This and related compounds, e.g. GYKI53655
(LY300168) and SYM2206, are valuable tools for separating the roles
of AMPA and kainate receptors (Lerma et al., 1997; Bleakman and
Lodge, 1998).

Almost in parallel with the demonstration of this negative
allosteric modulator of AMPA receptor function was the elucidation
of potent compounds that had the reverse effect. Cyclothiazide and
related substances were shown to enhance responses to AMPA
receptor agonists by reducing desensitisation/deactivation at this
receptor (Bertolino et al., 1993; Zorumski et al., 1993; Palmer and
Lodge, 1993; Patneau et al., 1993) (see Fig. 7B). Some older noo-
tropic compounds such as aniracetam have a similar action (e.g. Ito
et al., 1990; Tang et al., 1991; Staubli et al., 1992). Newer compounds
with similar activities were soon discovered and characterised by
Cortex Pharmaceuticals and Eli Lilly & Co. (e.g. Lynch et al., 1997;
Arai et al., 2000; Murray et al., 2003). Although negative allosteric
modulators of kainate receptors had not yet been described, certain
plant lectins, and in particular concanavalin A, a blocker of gluta-
mate receptor desensitisation on insect muscles (Mathers and
Usherwood, 1978), reduced the desensitisation of kainate receptors
on DRG neurones (Huettner, 1990; Pook et al., 1993). Wong and
Mayer (1993) used these two blockers of desensitisation to distin-
guish between AMPA-preferring and kainate-preferring receptors.
The sites of action on the AMPA receptor protein for the positive
and negative allosteric modulators have been shown to be separate
(Mayer and Armstrong, 2004; Balannick et al., 2005; Jin et al.,
2005).

14. AMPA and kainate receptors in synaptic events

The quinoxalinediones were used to establish a role for non-
NMDA receptors in synaptic transmission. Thus on hippocampal,
cortical, amygdala, nigral, thalamic, brainstem and spinal neurones,
synaptic responses were significantly reduced by CNQX and DNQX
(Fletcher et al., 1988; Blake et al., 1988; Davies and Collingridge,
1989; Salt and Eaton, 1989; Long et al., 1990; Andreasen et al., 1989;
Mereu et al., 1991; Rainnie et al., 1991). In all such experiments, it is
the early fast component that is sensitive to non-NMDA antago-
nists, i.e. the reverse of that described with NMDA antagonists (e.g.
Lodge et al., 1978; Davies and Watkins, 1979).

The question as to whether the pharmacologically distinct
excitations are mediated at the same or different synapses was
answered by Dale and Roberts (1985). Using a less selective
antagonist, they clearly showed that unitary EPSCs had early non-
NMDA and later NMDA receptor-mediated components, showing
that release from a single afferent could activate both receptor
types. This concept was substantiated in later studies (Forsythe and
Westbrook, 1988; Collingridge et al., 1988; Sillar and Roberts, 1988;
Andreasen et al., 1988; McBain and Dingledine, 1992; Clark and
Collingridge, 1995). One important use of CNQX, and other qui-
noxalinediones, was to block AMPA and kainate receptor-mediated
synaptic transmission and thereby enable the synaptic activation of
pure NMDA receptor-mediated synaptic responses (Blake et al.,
1988; Davies et al., 1989). This approach has since been exploited
extensively, for example to demonstrate the plasticity of NMDA
receptor-mediated synaptic transmission (e.g. Bashir et al., 1991).

GYKI52466 and related 2.3-benzodiazepines were used to
define the majority of these postsynaptic non-NMDA receptors as
AMPA receptors, rather than kainate receptors, on cortical, brain-
stem, thalamic and spinal neurones (Turner and Salt, 1998; Ouar-
douz and Durand, 1994; Világi et al., 1998; Rammes et al., 1994). In
some experiments cyclothiazide and GYKI52466 had opposing
effects confirming the identity of these postsynaptic receptors as
the AMPA subtype (e.g. Rammes et al., 1994; Vyklicky et al., 1991).

Blocking AMPA receptors with these 2,3-benzodiazepines also
helped to reveal a role for kainate receptors (Paternain et al., 1995).
Thus, activation of kainate receptors was found to regulate both
excitatory (Chittajallu et al., 1996) and inhibitory (Clarke et al.,
1997) synaptic transmission as well as contributing to the synaptic
response at mossy fibre synapses in the hippocampus (Vignes and
Collingridge, 1997; Castillo et al., 1997). The presynaptic effects are
most likely due to changes in calcium entry into terminals (Kamiya
and Ozawa, 1998). Kainate receptors mediating synaptic excitation
in the mossy fibre pathway to CA3 were also demonstrated by
blocking AMPA receptors with 2,3-benzodiazepines (Vignes and
Collingridge, 1997; Frerking et al., 1998; Yamamoto et al., 1998). In
the same fashion, kainate receptor-mediated synaptic responses
have been demonstrated in the basolateral amygdala (Li and
Rogawski, 1998) and in spinal nociceptive transmission (Simmons
et al., 1998). Other pharmacological evidence supports this spinal
role of kainate receptors (Stanfa and Dickenson, 1999; Li et al.,
1999).
15. Diversity within the NMDA, AMPA and kainate classes

Two other actions of glutamate-like agonists were found at
about the same time: (i) L-AP4 reduced synaptic excitation without
antagonism at the three receptor subtypes, and (ii) trans-ACPD
induced excitation, an effect not reversed by the known glutamate
antagonists. These effects, initially considered as being due to
ionotropic receptors, are now known to be mediated by G-protein
coupled, metabotropic glutamate receptors (see e.g. Monaghan
et al., 1989; Schoepp and Conn, 1993).

Even before the impact of cloning was realised, there were hints
of pharmacological differences within the NMDA, AMPA and kai-
nate classes of receptor. For example, diversity of NMDA receptors
was well established before its cloning (e.g. Yoneda and Ogita, 1991;
Monaghan and Beaton, 1992). Differences in the affinity for agonists
and antagonists (Monaghan et al., 1988; Monaghan and Beaton,
1991), in glycine binding (O’Shea et al., 1991), in PCP binding (Ebert
et al., 1991), in MK-801 binding and polyamine effects (Reynolds
and Palmer, 1991) and in the effects of ifenprodil (Reynolds and



Fig. 7. Allosteric antagonism and potentiation of responses to AMPA. A. GYKI52466
reversibly reduces responses of this spinal neurone to AMPA and kainate but not to
NMDA. Note that although kainate responses are reduced, 2,3-bezodiazepines such as
GYKI52466 are very selective for AMPA receptors. Kainate activates both AMPA and
kainate receptors. Note GYKI52466 was the first truly selective AMPA antagonist
described (modified from Lodge et al., 1992). B. Cyclothiazide potentiates responses to
AMPA and not those to NMDA on a cortical slice preparation. Cyclothiazide is also
inactive on kainate receptors making it also a useful compound for discriminating
between AMPA and kainate responses (Woolley and Lodge, unpublished observation).
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Miller, 1989; Rao et al., 1989) all pointed to NMDA receptor
heterogeneity (see Monaghan and Buller, 1994).

High and low affinity binding sites for AMPA and kainate
receptors were described. Although the AMPA sites appeared to be
interconvertible, the two kainate binding sites could represent
subdivisions of kainate receptors (see Honore and Drejer, 1988;
Honore et al., 1989; Young and Fagg, 1990; Monaghan et al., 1989).
The two AMPA binding sites are probably explained by desensitised
and non-desensitised states of the same AMPA receptors (O’Brien
and Fischbach, 1986; Patneau and Mayer, 1991).

Differences in the rectification and calcium permeability prop-
erties of AMPA and kainate receptors have been identified (e.g. Iino
et al., 1990; Brorson et al., 1992). Similarly variations in sensitivity
to Joro spider polyamine toxins led to description of Type I and II
AMPA receptors in hippocampal neurones (Iino et al., 1996).
Previously, argiotoxin had been shown to reduce responses of rat
spinal neurones to AMPA rather than to NMDA (Jones and Lodge,
1991) whereas on cortical neurones, argiotoxin selectively reduced
responses to NMDA (Priestley et al., 1989). These results are
consistent with diversity within both the AMPA and NMDA
receptor populations (Williams, 1993, 1997).

Interestingly, kainate receptor heterogeneity was suspected
from early studies of kainate actions on hippocampal CA1 neurones
(Kehl et al., 1984); direct depolarisation, presynaptic facilitation of
excitatory synapses and inhibition of GABAergic inputs have
separate characteristics suggestive of ‘a number of distinct receptor
types’ (McLennan et al., 1984).

16. Cloning of glutamate receptors: the AMPA
receptor subunits

The first cloning depended on the observation that brain mRNA
injected into Xenopus oocytes by Miledi et al. induced responses to
glutamate and kainate (Gunderson et al., 1984). Several years later,
in Heinemann’s group this experiment was replicated and the most
effective sample of brain mRNA was used to produce a cDNA library
which in turn was used to produce 44,000 pools of mRNA. Only one
of these pools produced a reasonable glutamate-induced current
when injected back into the oocytes. The active pool had then to be
continually subdivided until the cDNA coding for the glutamate
receptor was found. The sense, but not the anti-sense, mRNA
transcribed from this clone resulted in glutamate-activated
currents which were considerably larger when kainate was used as
the agonist. The DNA was sequenced and the amino acid structure
deduced (Hollmann et al., 1989) and named GluR-K1 on the basis of
its sensitivity to kainate. In the next 2 years, the same basic protein
was reported by six other groups and, interestingly with respect to
nomenclature, given 5 other names! Nakanishi et al. (1990)
retained GluR-K1, Keinanen et al. (1990) named it GluR-A, Sakimura
et al. (1990) named the mouse version a1, whereas Puckett et al.
(1991), Potier et al. (1992) and Sun et al. (1992) named the human
version GluH1, KR4 and HBGR1 respectively. The initial implication
was that these were kainate receptors. It quickly became apparent
using binding studies that this was an AMPA receptor protein,
showing, as with the native AMPA receptors, non-desensitising
responses to kainate (see e.g. Sommer et al., 1990) and the name
GluR1 and GluR-A became the commonly used names thereafter
(Hollmann and Heinemann, 1994; Nakanishi and Masu, 1994;
Sprengel and Seeburg, 1993).

Following on from the original report from Heinemann’s group
(Hollmann et al., 1989), cloning by sequence homology revealed
further AMPA receptor family members in the next few years. Thus
Boulter et al. (1990), Keinanen et al. (1990), Nakanishi et al. (1990),
and Sakimura et al. (1990) described a second subunit as GluR2,
GluR-B, GluR-K2 or a2 respectively, a third one as GluR3 or GluR-C
and a fourth one as GluR4 or GluR-D. These all had about 70%
sequence homology with each other and a similar pharmacology.
They were initially thought of as AMPA/kainate receptors.

17. Cloning of glutamate receptors: the kainate
receptor subunits

Homology screening also led to the discovery of a subunit with
40% homology to GluR1–4, which was named GluR5 (Bettler et al.,
1990). The lower homology suggested the possibility of a different
subtype, but the weak responses of GluR5 to agonists did not allow
it to be classified pharmacologically (Bettler et al., 1990). However,
a subsequent study by Sommer et al. (1992) reported the desensi-
tisation to kainate of this subunit (GluR5) akin to that seen in
sensory neurones (Huettner, 1990). This defined GluR5 as
a member of the kainate family; also called EAA3 in man (Korczak
et al., 1995). In between times, Egebjerg et al. (1991) had described
GluR6, another subunit with similar kainate-preferring properties,
its equivalents in the mouse and in the human were named
respectively b2 by Morita et al. (1992) and humEAA4 by Hoo et al.
(1994). A third member of this series was cloned as GluR7 by Bettler
et al. (1992) and GluR7 by Lomeli et al. (1992). This group of 3
subunits has about 70% homology between them and about 40%
homology with the AMPA receptors, GluR1-4. They bind kainate
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with high affinity and form functional channels activated by
glutamate and kainate which are enhanced in the presence of
concanavalin A (Hollmann and Heinemann, 1994; Nakanishi and
Masu, 1994; Sprengel and Seeburg, 1993).

A subunit with even higher kainate affinity, KA1, was cloned by
Werner et al. (1991); this was followed by the cloning of a second
one variously named KA2 in the rat (Herb et al., 1992) and g in the
mouse (Sakimura et al., 1992). The equivalents in man were named
as humEAA1 and humEAA2 (Kamboj et al., 1992, 1994). They share
about 70% homology with each other but only about 40% with
GluR1–4 and GluR5–7. These subunits did not form functional
channels when expressed alone or with each other but did combine
with the GluR5–6 group to produce functional channels with
modified properties (Herb et al., 1992; Hollmann and Heinemann,
1994).

18. Cloning of glutamate receptors: the NMDA
receptor subunits

The NMDA subunits were cloned roughly in parallel with the
kainate receptors. The first one was named NMDAR1 or NR1 in the
rat (Moriyoshi et al., 1991) and also in the human (Karp et al., 1993),
but called z (zeta) in the mouse (Yamazaki et al., 1992b). A second
series, the NR2 subunits, followed shortly. Monyer et al. (1992) and
Monyer and Seeburg (1993) cloned the rat NR2A–D. Meguro et al.
(1992) cloned the mouse 31, Kutsuwada et al. (1992) the mouse 31–
33 and Ikeda et al. (1992) the mouse 34. The full family was also
completed by Ishii et al. (1993) who named them NMDAR2A–
NMDAR2D. It quickly became apparent that the NR1 subunit bound
glycine and not glutamate whereas the NR2 subunits bind gluta-
mate, which accounts for the co-agonist property of native NMDA
receptors. It is therefore somewhat surprising, knowing this, that
Moriyoshi et al. (1991) were able to show glutamate-activated
currents after expression of NR1 alone. These responses were
considerably enhanced by inclusion of one or more of the NR2
subunits, which by themselves had no detectable function. The NR2
subunits have a 40% homology with each other and a 25% homology
with NR1 but low homology with the AMPA and kainate receptor
subtypes. The NR2 subunits convey differences in pharmacology,
e.g. the NR2B subunit combinations underlie the sensitivity to
ifenprodil and related compounds. Latterly a third type of NMDA
subunit was cloned, this NR3 subtype (initially called NMDAR-L;
Sucher et al., 1995 or chi-1/c-1; Ciabarra et al., 1995) also binds
glycine rather than glutamate and co-expression with other NMDA
subunits caused an inhibition of the currents evoked by NMDA and
glutamate. No such inhibition was observed when the NR3 was
expressed with GluR1 or GluR6. A second member of the glycine-
sensitive NR3 group, namely NR3B, was cloned later (Matsuda et al.,
2002).

19. Cloning of other glutamate binding proteins

In addition to the above subunits, several proteins have been
cloned that bind glutamate and have some homology with the
above receptor subunits. These include two rat delta units, d1
(Yamazaki et al., 1992a) expressed throughout the developing
brain, and d2 expressed mainly in the cerebellum (Lomeli et al.,
1993; Araki et al., 1993). Although apparently not forming func-
tional channels with any of the known subunits, the d2 subunit is
crucial for synaptic plasticity in the cerebellum. Earlier, kainate
binding proteins from the chick (Gregor et al., 1989) and from the
frog (Wenthold et al., 1990) and from rat brain (Hampson et al.,
1987) were identified but their functions have remained elusive.
Other glutamate binding proteins thought at the time to be
subunits of the NMDA complex were isolated and some were
cloned but not prove to be functionally active (Kumar et al., 1991).
Although the role of these proteins is very sketchy, it should be
remembered that the situation with KA1 and KA2 was similar until
their partners, e.g. GluK5 and GluK6, were elucidated.

20. Molecular diversity and pharmacological development

The results of the above and subsequent molecular biological
studies have opened our eyes to the potential diversity of iono-
tropic glutamate receptors. Assuming that there are homomeric
and heteromeric combinations within each of these three groups
resulting in tetrameric receptors, the potential for combinations is
enormous. Totally beyond the scope of this review, there are also
numerous possibilities for post-transcriptional and post-trans-
lational variations, each adding nuances to receptor functions.
Thus, the number of splice variants is large, RNA editing is a feature
of many of these subunits (Sommer et al., 1991). Such diversity will
have to be dealt with eventually by the NC-IUPHAR Nomenclature
Committee. As an example, for NR1 alone there are 3 sites for splice
variants resulting in 8 potential combinations. There are at least 5
ways of naming such splice variants!! (see Zukin and Bennett,
1995), and pedantically this is a glycine, rather than glutamate,
receptor subunit! In the first extracellular loop of the GluR1–4,
there is the possibility of alternative exons resulting from splice
variants which affect rates of desensitisation, and hence are named
‘flip’ and ‘flop’ and to complicate matters further there is an RNA
editing site immediately preceding this region which also
contributes to the receptor kinetics (Lomeli et al., 1994) – again the
opportunities for naming are complex!

Characterisation of the recombinant receptors has greatly aided
our understanding of the glutamate pharmacology. For example,
within the above ‘flip/flop’ domain is a single amino acid that
determines sensitivity to cyclothiazide. The Q/R editing site within
the ionophores of the AMPA and kainate receptors determines their
calcium permeability and their sensitivity to polyamines, including
the wasp and spider toxins, and hence rectification properties – the
edited and unedited forms will need denoting in the nomenclature.
Similarly, an equivalently located asparagine residue controls the
calcium permeability and magnesium block of NMDA receptor
channels. Ifenprodil and related compounds act selectively at
NMDA receptors containing NR2B subunits.

Screening of compounds on the cloned receptors has also led to
novel pharmacology. An interesting example is that certain iso-
xazoles and decahydroisoquinolines, originally thought to be
selective agonists and antagonist respectively for AMPA receptors
(Schoepp et al., 1995; Bleakman and Lodge, 1998), also showed
activity at the kainate subunits expressed on DRG neurones. This
ultimately led to the elucidation of both agonists, ATPA and iodo-
willardiine, and antagonists, LY382884 and ACET, which are highly
selective for the GluR5 receptor subunit (Fig. 8B; see Bleakman and
Lodge, 1998; Jane et al., 2009; Dargan et al., 2009).

21. Early nomenclature proposals

While the diversity of native receptors was being elucidated,
suggestions were made for a nomenclature more generic in nature,
akin to the D1 and D2 names for dopamine receptors. For example,
Nadler et al. used the terms GLU A, GLU B and GLU C to describe
glutamate binding sites differentially sensitive to a variety of
inorganic ions and of receptor ligands (Werling et al., 1983; Nadler
et al., 1985). These terms, however, did not easily map to the
traditional glutamate receptor subdivisions. In 1983 based on
electrophysiological and biochemical measures, Lynch et al.
proposed the terms: G1 for a synaptic receptor activated by
homocysteate but not NMDA and G2 for an extrasynaptic receptor
that desensitises to L-glutamate, in addition to an NMDA and
a kainate receptor (Fagni et al., 1983: Baudry et al., 1983); this



Fig. 8. Kainate receptors. A. In vitro spinal cord preparation using grease seal technique to show concurrent depolarising effect of a series of excitatory amino acids on the dorsal
root versus spinal cord. Dorsal root C fibres respond uniquely to kainate and glutamate. They show no depolarisation to quisqualate, AMPA or to NMDA. Note this was the first
convincing demonstration of a response mediated by kainate receptors (modified from Agrawal and Evans, 1986). B. LY382884 3 mM selective reduces whole cell currents activated
by kainate and ATPA (left hand records) on dorsal root ganglion neurones but requires 300 mM to reduce whole cell currents activated by AMPA and NMDA on hippocampal
neurones. The full dose–response curves for these effects of LY382884 are shown in the center panel. Note LY382884 was the first truly selective kainate receptor antagonist
described (modified from Bortolotto et al., 1999).
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nomenclature was occasionally used (e.g. Pin et al., 1989). Foster
and Fagg in 1984 first suggested A1–3 but this clashed with the
nomenclature for the adenosine receptors, and so the same authors
subsequently proposed AA1–3 to represent the ‘NMDA, quisqualate
and kainate’ receptors respectively (Fagg et al., 1986). AA was
derived from Acidic Amino acid. They argued logically that because
of the cross-interaction between the ligands and receptors and
particularly the non-specificity of quisqualate, terms based solely
on exogenous agonists were not appropriate. They used the generic
AA because the nature of the natural transmitter was still hotly
debated and they didn’t accept a proposal using ‘E1–3’ (E for
excitatory) because other receptors were not named by function.
Despite a concerted effort over several years (e.g. Foster and Fagg,
1988) and some wider use (e.g. Récasens et al., 1987; Beal et al.,
1989), the majority of the field remained conservative, however,
and in the pre-cloning era stayed with the NMDA, AMPA and kai-
nate receptor nomenclature.

22. Towards a new consensus nomenclature

However, with the advent of cloning and multiplicity of receptor
subunits and the idiosyncratic naming by the workers involved (see
above), there was a demand for some uniformity. Under the
auspices of the IUPHAR Nomenclature Committee in 2001, Lodge
and Dingledine proposed a new nomenclature based on the
guidelines from IUPHAR (capital letters for the transmitter and
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subscripts for the subtypes), and a commonly expressed desire to
retain the identity with respect to (i) the differentiating agonists
and (ii) the terms commonly in use at the time. Thus the NMDA and
AMPA receptor subunits were proposed to be GLUN1, GLUN2A–D and
GLUN3A–B and GLUA1–4; the decision for the kainate subtypes was
more fraught but GLUK5–7 and GLUK1–2 were proposed for GluR5–7
and KA1–2, the hope being that GLUK3–4 might emerge from the
ongoing cloning efforts. Note the ‘R’ for receptor is dropped because
these are subunits rather than the functional multimeric receptors.

Despite general agreement from a large number of participants
(Lodge and Dingledine, 2001), this nomenclature had limited use.
So the variation in subunit names presently in use remains diverse
and confusing especially to the non-expert! The new proposal,
developed by Graham Collingridge and his NC-IUPHAR sub-
committee, deals with a number of issues that were wrong with the
2001 attempt (Collingridge et al., 2009). Namely the technical
difficulty of switching into and out of subscript mode has been
avoided. Thus for example, GLUN1 and GLUA4 have become GluN1
and GluA4 respectively. The nomenclature of kainate subunits has
been aligned, as was previously the case for the NMDA and AMPA
subunits, with the GENBANK entries. Thus GluR5–7 (GLUK5–7)
become GluK1–3, and KA1–2 (GLUK1–2) become GluK4–5; the
respective genes are GRIK1–3 and GRIK4–5. This more logical
scheme should also be easier to use and hopefully will be readily
adopted.

23. Conclusion

From humble developments and heroic experiments describing
the role of glutamate as a neurotransmitter and the pharmacolog-
ical subdivisions of receptor subtypes, the cloning and expression
of 16 genes coding for glutamate receptor subunits was realised.
The characterisation of these recombinant receptors from the
NMDA, AMPA and kainate families has added enormously to our
understanding of native receptors. The use of site-directed muta-
genesis, receptor hybridisation techniques, molecular modelling of
binding sites, X-ray crystal structure, high throughput screens,
patch clamp electrophysiology, transgenic animals, etc. has and will
continue to direct research for more selective compounds and to
help determine the physiological and pathological roles of these
ligand-gated ion channels.
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